

Marina Krotofil

Swiss Cyber Storm Bern, Switzerland 12.10.2021

Supply chain security

- Has been an a
- Has been an a

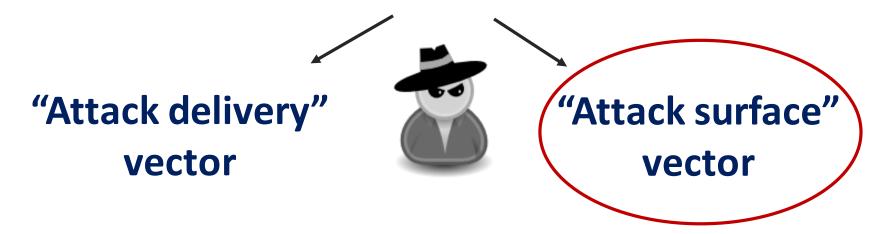
Most devastating supply chain attack

- NotPetya attack in Ukraine, June 27 2017 (Constitution day)
- An update for MeDoc tax software was pushed out by the update server
 - All vital functions in the whole country were paralyzed in less than 24hrs

Most recent supply chain attacks

- Complexity and impact of supply chain attacks are increasing
- Mostly state-sponsored level of attack vector: both execution & management

"Attack delivery" vector

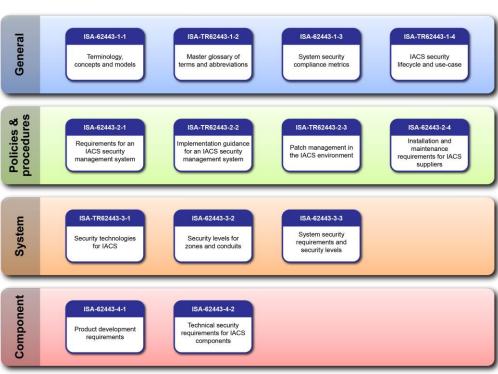

"Attack surface" vector

Two sides of a coin

Supply Chain Security

Wipro Confirms Hack and Supply Chain Attacks on Customers

Cisco and Palo Alto Networks appliances impacted by Kerberos authentication bypass


"Attack surface" vector

Software Bill of Materials Elements and Considerations

A Notice by the National Telecommunications and Information Administration on 06/02/2021

Supply chain security in OT/ICS/CI

- IEC 62443 is international series of standards which specifies comprehensive requirements for the secure development, integration and maintenance of <u>assets</u> used in Industrial Automation & Control Systems (IACS)environments
- Targets at:
 - Vendor
 - Integrator
 - Asset owner

Examples of industrial controllers

https://vecer.mk/files/article/2017/05/02/485749-sa.udiska- ara bija-ja-kupi- na jg ole mata- naften a-rafiner ij a-vo-s ad.jpg

http://www.jfwhite.com/Collateral/Images/English-US/Galleries/middleboro9115kvbreakers.jpg

https://www.roboticsbusinessreview.com/wp-content/up loads/2016/05/iaguar-factory.ip

Device security vector

SL =

Identification & Authentication
Control
Use control
System integrity
Data confidentiality
Restricted data flow
Timely response to events
Resource availability

	2
	2 2
	0
=	0 1
	3
	1
	3

Security Level	Target	Skills	Motivation
SL1	Casual or coincidental violations	No Attack Skills	Mistakes
SL2	Cybercrime, Hacker	Generic	Low
SL3	Hacktivist, Terrorist	ICS Specific	Moderate
SL4	Nation State	ICS Specific	High

Foundational Requirements (FR)

Security certification of industrial assets

- Certification was developed to attest that devices meet IEC-62443 requirements:
 - "Asset owners have confidence that the IACS products they purchase are <u>robust against network attacks</u> and are <u>free from known security</u> vulnerabilities"
- Most commonly certified:
 - Security Development Lifecycle Assurance Program (SDLA)
 - Embedded Device Security Assurance Program (EDSA)

Honeywell Process Solutions	DCS Controller	Experion C300	R430	EDSA 2010.1 Level 1	10/27/2016
Honeywell Process Solutions	PLC	ControlEdge PLC	R140	EDSA 2.0.0 Level 2	7/3/2017

Security certification efforts

- Is mostly about functional testing
- Long hanging fruits things

			Security Level 4	
	Security Level 2	Security Level 3	Secure Development Lifecycle Assessment	
	Security Level 2	Secure Development Lifecycle Assessment		
Security Level 1	Secure Development Lifecycle Assessment			
Secure Development				
Lifecycle Assessment		Functional Security	Functional Security Assessment	
Functional Security Assessment	Functional Security Assessment	Assessment		
	Robustne	ss Testing		

Typical Chartered Lab Level of Effort in Man Weeks

		Level 1	Level 2	Level 3
1.	CRT test all accessible TCP/IP interfaces	1 - 2 weeks	1 - 2 weeks	1 - 2 weeks
2.	Perform FSA on device and all interfaces	< 1 week	1 week	1 – 2 weeks
3.	Audit supplier's software development process	1 week	1 – 2 weeks	1 – 2 weeks
4.	Perform ITA and issue report	1 week	1 week	1 week
		3 – 5 weeks	4 – 6 weeks	4 – 10 weeks

Vulnerabilities in device supply chain

- Urgent/11 (July 2019)
- Ripple20 (June 2020)
- Amnesia:33 (December 2020)

Black Hat talks

From an URGENT/11 Vulnerability to a Full Take-Down of a Factory, Using a Single Packet

Barak Hadad | Security Researcher, Armis
Dor Zusman | Security Researcher, Armis

Hacking the Supply Chain – The Ripple20 Vulnerabilities Haunt Tens of Millions of Critical Devices

Shlomi Oberman | CEO, JSOF LTD Moshe Kol | Security Researcher, JSOF LTD Ariel Schön | Security Researcher, JSOF LTD

How Embedded TCP/IP Stacks Breed Critical Vulnerabilities

Daniel dos Santos | Security Researcher, Forescout Technologies

Stanislav Dashevskyi | Security Researcher, Forescout Technologies

Jos Wetzels | Security Researcher, Forescout Technologies

Amine Amri | Security Researcher, Forescout Technologies

Attack surface is not evaluated

Authentications schemes in industrial PLCs are regularly broken by (not very advanced) researchers

Empirical Study of PLC Authentication Protocols in **Industrial Control Systems**

Adeen Ayub

Department of Computer Science Virginia Commonwealth University Richmond, United States of America ayuba2@vcu.edu

Hyunguk Yoo Department of Computer Science

The University of New Orleans New Orleans, United States of America hyoo1@uno.edu

Irfan Ahmed Department of Computer Science Virginia Commonwealth University Richmond, United States of America

iahmed3@vcu.edu

https://ieeexplore.ieee.org/document/9474296

Rogue7: Rogue Engineering-Station attacks on S7 Simatic PLCs

Eli Biham¹

Sara Bitan¹

Aviad Carmel¹ Avishai Wool²

Alon Dankner¹

Uriel Malin²

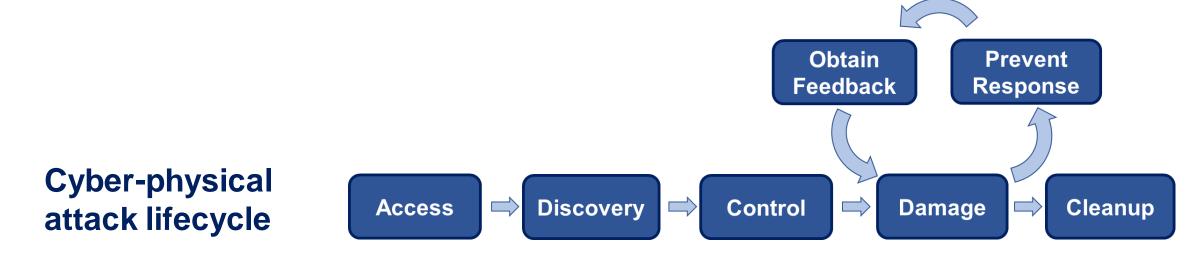
PLC Access Control: A Security Analysis

Haroon Wardak Information and Computer Science Department KFUPM, Dhahran, 31261, KSA Email: g201302150@kfupm.edu.sa

Sami Zhioua Information and Computer Science Department KFUPM, Dhahran, 31261, KSA Email: zhioua@kfupm.edu.sa

Ahmad Almulhem Computer Engineering Department KFUPM, Dhahran, 31261, KSA Email: ahmadsm@kfupm.edu.sa

What's my interest in device attack surface?


 Research specialization: Offensive cyber-physical security in Critical Infrastructures

Focus:

 Physical damage or how to make something going bad, wrong, crash or blow up by means of cyber-attacks

Using asset design for attacker needs

- Assist with attack activities, e.g. reconnaissance
- Exploit asset designs for attack execution

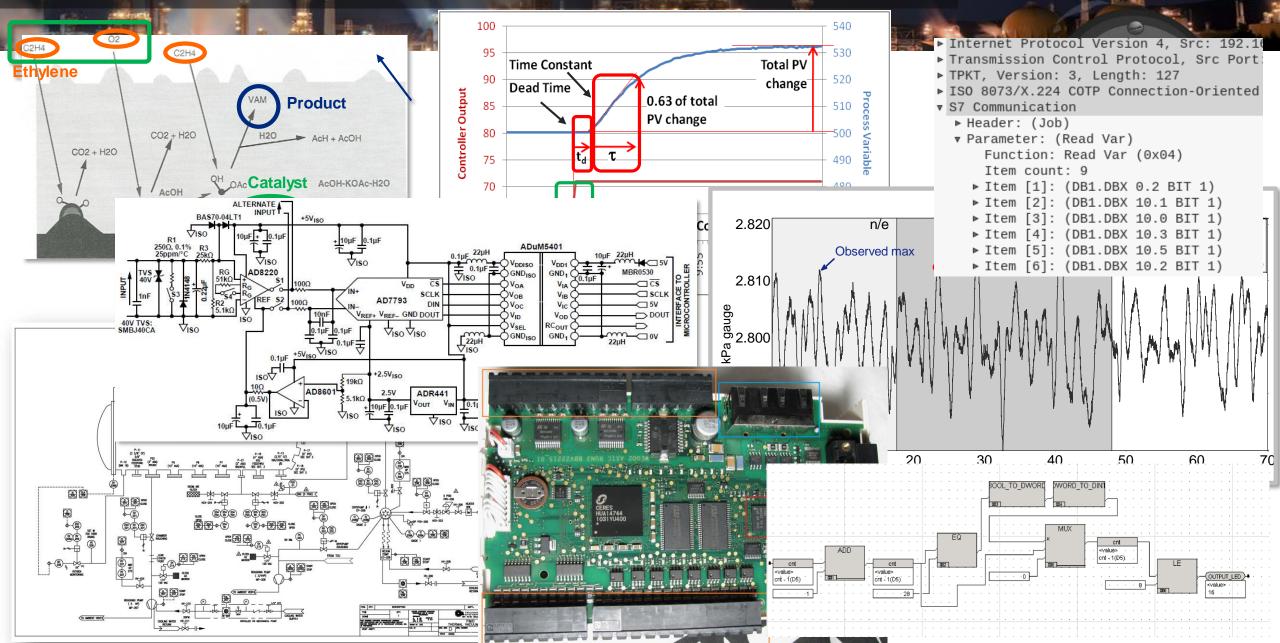
A Rising Tide: Design Exploits in Industrial Control Systems

Alexander Bolshev IOActive, Inc. Madrid, Spain Jason Larsen IOActive, Inc. Seattle, WA 98104, USA Marina Krotofil

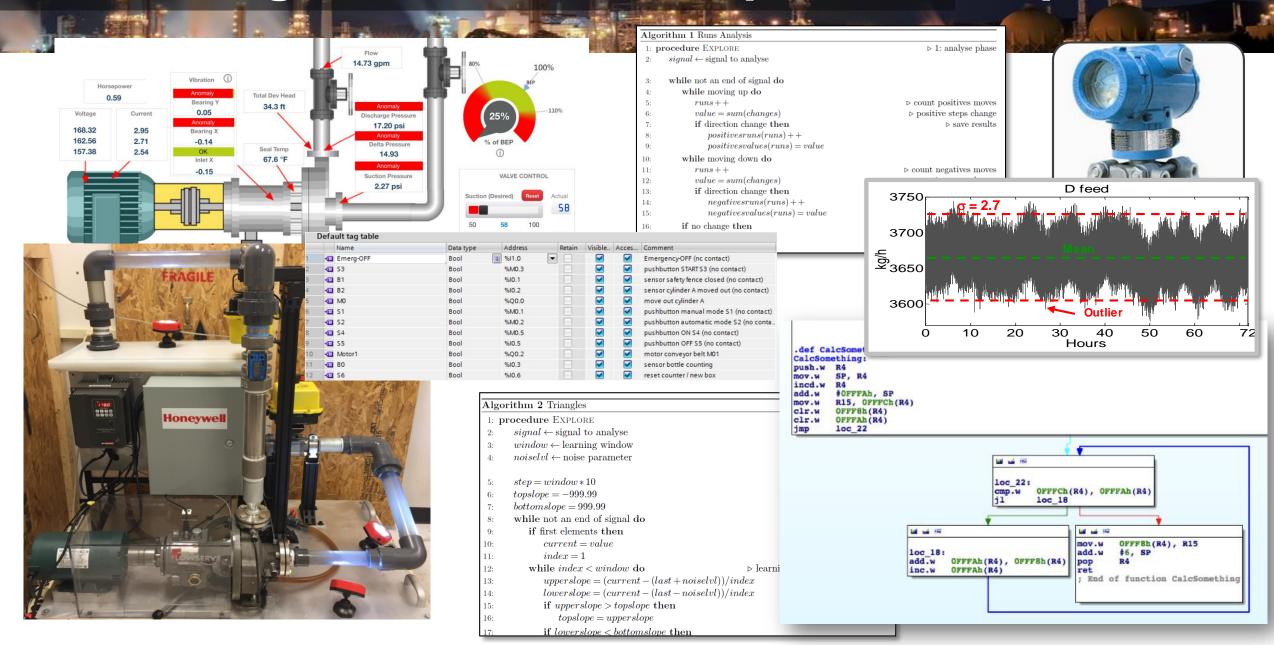
Honeywell

Duluth, GA 30097, USA

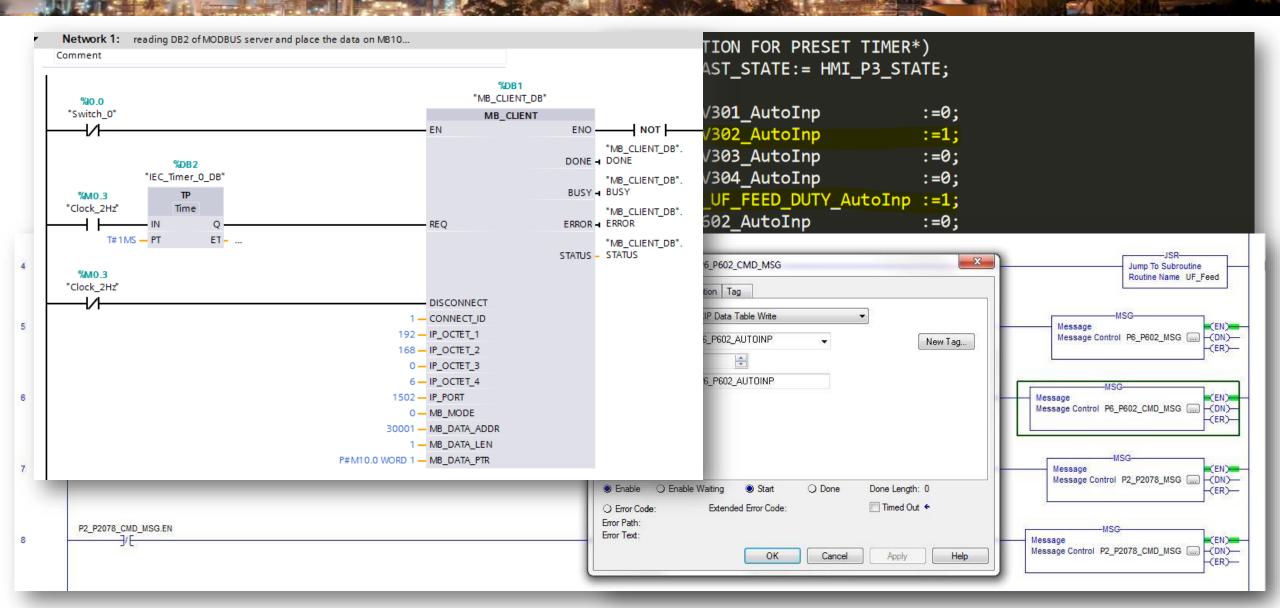
Reid Wightman Digital Bond Indianapolis, IN 46220 USA

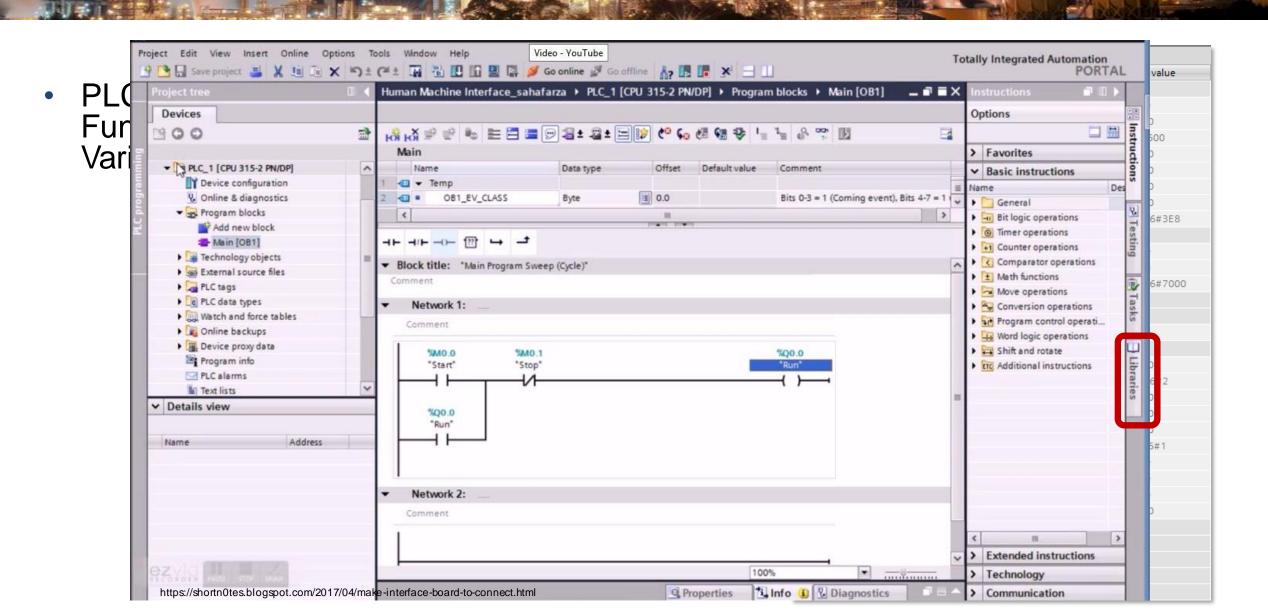

On the Significance of Process Comprehension for Conducting Targeted ICS Attacks

Benjamin Green Lancaster University Lancaster, United Kingdom b.green2@lancaster.ac.uk Marina Krotofil

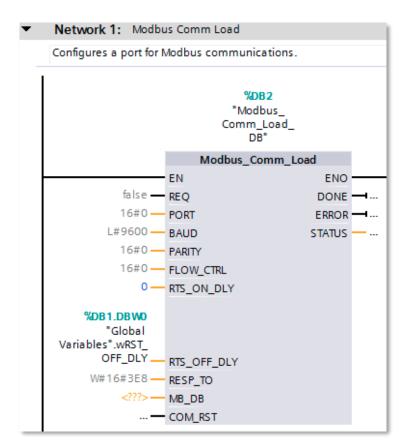

Hamburg University of Technology
Hamburg, Germany
marina.krotofil@tuhh.de

Ali Abbasi University of Twente Enschede, Netherlands a.abbasi@utwente.nl


Knoweldge involved into exploit development


Knoweldge involved into exploit development

Control logic is a key component



Static memory addressing

Static memory allocation & addressing

 PLC vendors offer libraries of standard Function Blocks (FB) with associated Variable/Data Blocks

	Мо	db	us_Comm_Load_DB			
		Na	me	Data type	Offset	Start value
1	1	•	Input			
2	1	•	REQ	Bool	0.0	false
3	1	•	PORT	Word	2.0	16#0
4	1	•	BAUD	DInt	4.0	L#9600
5	1	•	PARITY	Word	8.0	16#0
6	1	•	FLOW_CTRL	Word	10.0	16#0
7	1	•	RTS_ON_DLY	Word	12.0	16#0
8	1	•	RTS_OFF_DLY	Word	14.0	16#0
9	1	•	RESP_TO	Word	16.0	W#16#3E8
10	1	•	Output			
11	1	•	DONE	Bool	18.0	false
12	1	•	ERROR	Bool	18.1	false
13	1	•	STATUS	Word	20.0	W#16#7000
14	1	•	InOut			
15	1	•	MB_DB	Struct	22.0	
16	1	•	COM_RST	Bool	28.0	false
17	1	•	Static			
18	1	•	ICHAR_GAP	Word	30.0	16#0
19	1	•	RETRIES	Word	32.0	W#16#2
20	1	•	MODE	Byte	34.0	16#0
21	1	•	LINE_PRE	Byte	35.0	16#0
22	1	•	BRK_DET	Byte	36.0	16#0
23	1	•	STOP_BITS	Byte	37.0	B#16#1
24	1	•	EN_DIAG_ALARM	Bool	38.0	false
25	1	•	EN_SUPPLY_VOLT	Bool	38.1	false
26	1	•	b_e_REQ	Bool	38.2	false
27	1	•	y_state	Byte	39.0	16#0
28	1	•	▶ Send_Config	Send_Config	40.0	
29	1	•	▶ Receive_Config	Receive_Config	126.0	
30	1	•	▶ Receive_Conditions	Struct	202.0	
31	1	•	▶ WRREC	WRREC	270.0	
32	1		► RDREC	RDREC	296.0	

Metadata

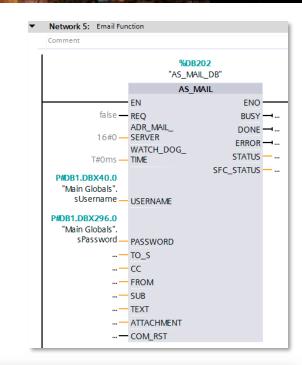
- Get Block Info (DB.1, etc.) or List Blocks
- Detectable as rare command

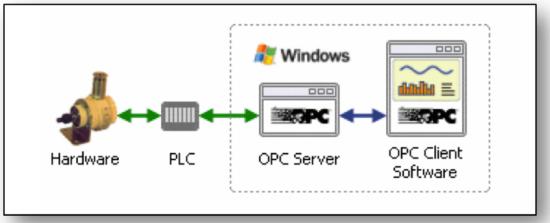
Bulk transfer

- Block Upload (DB.1, etc.)
- Detectable as rare command

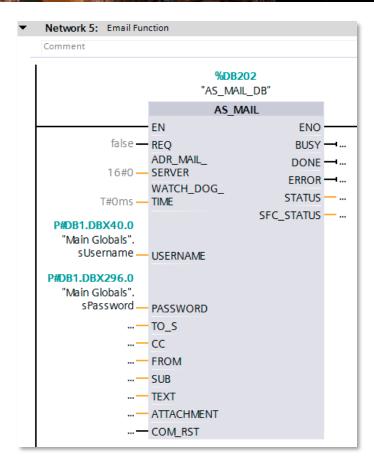
Bytecode read

- Read (DB.1, etc.)
- Stealth/not easily detectable due to usage of regular command


Information leakage vulnerability



		Na	me	Data type	Offset	Start value
	1	•	Input			
	1	•	REQ	Bool	0.0	false
	1	•	PORT	Word	2.0	16#0
	1	•	BAUD	Dint	4.0	L#9600
,	1		PARITY	Word	8.0	16#0
,	1	•	FLOW_CTRL	Word	10.0	16#0
7	1		RTS_ON_DLY	Word	12.0	16#0
3	1	•	RTS_OFF_DLY	Word	14.0	16#0
9	1	•	RESP_TO	Word	16.0	W#16#3E8
10	1	•	Output			
11	1	•	DONE	Bool	18.0	false
12	1	•	ERROR	Bool	18.1	false
13	1	•	STATUS	Word	20.0	W#16#7000
14	1	•	InOut			
15	1	•	MB_DB	Struct	22.0	
16	1	•	COM_RST	Bool	28.0	false
17	4	•	Static			
18	1	•	ICHAR_GAP	Word	30.0	16#0
19	40	•	RETRIES	Word	32.0	W#16#2
20	1	•	MODE	Byte	34.0	16#0
21	1	•	LINE_PRE	Byte	35.0	16#0
22	1	•	BRK_DET	Byte	36.0	16#0
23	1	•	STOP_BITS	Byte	37.0	B#16#1
24	1	•	EN_DIAG_ALARM	Bool	38.0	false
25	1	•	EN_SUPPLY_VOLT	Bool	38.1	false
26	1	•	b_e_REQ	Bool	38.2	false
7	1	•	y_state	Byte	39.0	16#0
8.	1	•	► Send_Config	Send_Config	40.0	
29	1	•	▶ Receive_Config	Receive_Config	126.0	
80	1	•	▶ Receive_Conditions	Struct	202.0	
31	1	•	▶ WRREC	WRREC	270.0	
32	1		▶ RDREC	RDREC	296.0	

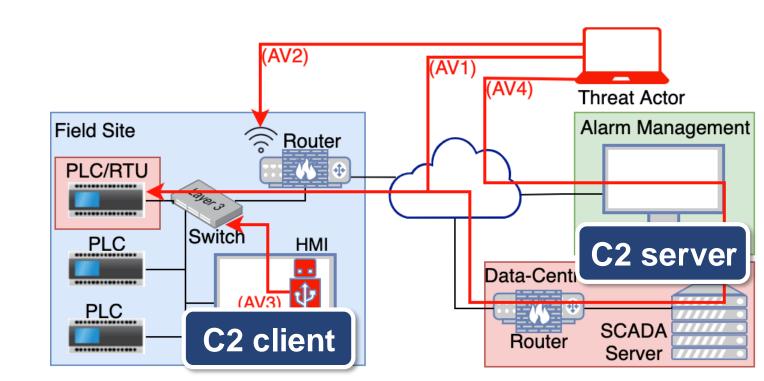

What we can enumerate

- Hundreds of standard function blocks
 - Communications
 - Remote administration
 - Control algorithms
 - Safety functions
 - Alerting
 - Etc., etc. (a good engineer would know better!)
- Closest analogy previously seen in the wild
 - Havex recon campaign, 2013

- Location of each variable within DB is known
 - Read request
 - DB.1, offset 4, read 32 bits
- Large variables stored in global database
 - Locatable via pointers
 - Exfiltrate pointer address
 - Decode address p#DB.1DBx40.0
 - Exfiltrate content at the decoded address (read 256 bytes for strings)

	B(1) 90000000001}1	0000100000000{	0ffset(0000000000	
42 📲 📮	sUsername	String	40.0	'test@test.com'
43 40 .	s Password	String	206.0	'mynassword'

- Use write commands at target addresses
 - Variable values assigned directly
 - Default values
- Some variables are stored in global DB (via pointers)
 - "Pushed" to local DB every scan cycle (e.g., every 10 ms or 1sec)
 - Race condition situation for the attacker
 - Use smart tricks


	IEC_Counter_0_DB										
		Na	me	Data type	Offset	Start value					
1	1	•	Input								
2	1		CU	Bool	0.0	FALSE					
3	1		R	Bool	0.1	FALSE					
4	1		PV	Int 🔳	2.0	0					
5	1	•	Output								
6	1		Q	Bool	4.0	FALSE					
7	1		CV	Int	6.0	0					
8	1		InOut								
9	1	•	Static								
10	1	•	CUO	Bool	8.0	FALSE					

C2 channel to segregated environments

- Violates network segmentation defense/best practice (IEC 62443)
- Up to 10 bytes of unused memory with multiple incomplete bytes per DB
- Allows execution of commands at console level
 - E.g., ping 192.168.0.1

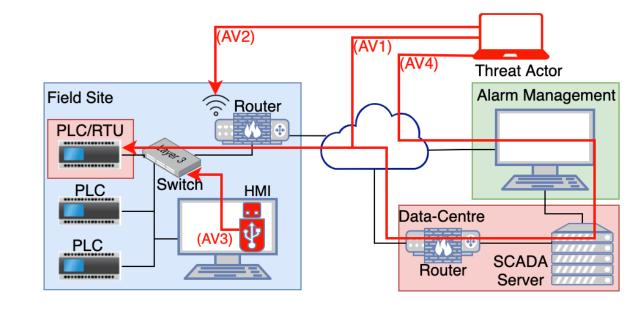
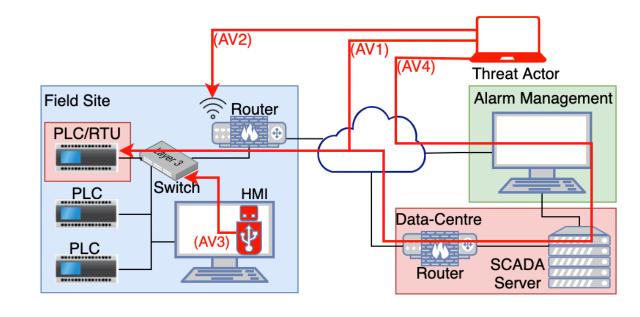

Function	C2-Server	C2-Client
Hello		00000001
Hello Ack	00000011	00000000
Write	01000000	11100000
Reading	11110000	01100000
Read	00000000	00000000
Final Write	11111111	11111110
On Hold	00011000	00011000

Table 1: Synchronization Byte

Detectability of attack techniques


- C2 communication is preventable/detectable by perimeter firewalls
- C2 based on Read/Write commands from trusted devices are not detected

Prevention										
Vendor/Device	Trusted/Untrusted	T1	T2	ТЗ	T4	T 5	T5s	Т6	T 7	T8
Siemens S623	Untrusted	N	N	N/A	N	N	N/A	N	N	Y
	Trusted	N	N	N/A	N	N	N/A	N	N	Y
Tofino Xenon	Untrusted	Y	Y	N/A	Y	Y	N/A	Y	Y	Y
	Trusted	N	N	N/A	N	N	N/A	N	N	Y
Westermo Redfox	Untrusted	Y	Y	N/A	Y	Y	N/A	Y	Y	Y
	Trusted	N	N	N/A	N	N	N/A	N	N	N
Checkpoint 1570R	Untrusted	Y	Y	N/A	Y	Y	N/A	Y	Y	Y
	Trusted	N	N	N/A	N	N	N/A	Y	Y	Y

Detectability of attack techniques

- Network monitoring solution with traffic baselining detect baseline deviation (Claroty)
 - Generates Event
 - "Baseline deviation change, not risky change"
 - No security Alert

Detection										
Vendor/Device	Trusted/Untrusted	T1	T2	Т3	T4	T 5	 T5s	T6	T7	T8
		(A/E)	(A/E)	(A/E)	(A/E)	(A/E)	(A/E)	(A/E)	(A/E)	(A/E)
Claroty CTD	Untrusted	Y (A)	Y (A)	N/A	Y (A)	Y (A)	N/A	Y (A) Y (A)	Y (A)	Y (A)
	Trusted	Y (E)	Y (A)	Y (A)	Y (A)	Y (A)				

Broader applicability of attack technique

- Allen Bradley SLC 500
 - Uses similar memory allocation approach
- ABB variable frequency drive
 - Provides library functions for e.g. Siemens PLC for drive control
 - Vulnerable to the same exploitation approach

Conclusions

- By exploiting memory allocation and addressing we developed approach to enumerate & manipulate function blocks/control logic on PLC
 - Applicable to arbitrary industrial environments
 - Using stealth techniques/undetectable (only read & write commands!!)
 - Fully automated exploit of high targeting precision
 - Establishment of covert channel to isolated network segments
- 300

- Exploitation of supply chain to attack supply chain
 - Profiling custom functions/FBs
 - Delivery of exploitation code

SCADA PROJECTS FROM THE POINT OF VIEW OF HACKERS

Currently asset owner is blamed in all occurrences of asset exploitation

The blame should be shared with asset vendor

Marina Krotofil @marmusha

marmusha@gmail.com