
Ksenia Peguero

Impact of Frameworks
on Security of JavaScript Applications

© 2021 Synopsys, Inc. 2

whoami
• Current: Sr. Manager of Research Engineering at

Synopsys Software Integrity Group

• Prior: Principle Consultant at Cigital/Synopsys

• PhD from George Washington University
• Mother
• Ballroom dancer
• Twitter @KseniaDmitrieva

© 2021 Synopsys, Inc. 3

Agenda

1. Background on JavaScript frameworks
2. Client-side JavaScript frameworks and XSS
3. Server-side JavaScript frameworks and CSRF
4. Electron framework and desktop application vulnerabilities
5. Conclusion

© 2021 Synopsys, Inc. 4

Language popularity by open pull request
according the GitHub’s Octoverse report from
2014 to 2020:

• JavaScript has been the leading
programming language for the last 7 years

• JavaScript is used for web applications on
client-side and server-side, in mobile
applications, desktop applications and IoT
software.

Popularity of JavaScript

https://octoverse.github.com

© 2021 Synopsys, Inc. 5

State of the Client-Side JavaScript Field Today

© 2021 Synopsys, Inc. 6

Frameworks and application development:
• According to Open Source Security and Risk Analysis (OSSRA)

report in 2019, 70% of the analyzed applications was made up by
open source code. Large part of that is frameworks.

How many frameworks are there in JavaScript ecosystem?
• Client-side: over 50 frameworks, according to the https://jsreport.io/

– Angular, React, Vue
• Server-side: over 40 frameworks, according to

http://nodeframework.com/
– Express, Koa, Sails

• Full-stack frameworks
– Meteor, Aurelia, Derby, MEAN.js

• Desktop frameworks
– Electron

• Mobile frameworks
– Phonegap, Cordova

How many frameworks are there?

https://jsreport.io/
http://nodeframework.com/

© 2021 Synopsys, Inc. 7© 2021 Synopsys, Inc. 7Synopsys Confidential InformationSynopsys Confidential Information

Questions:

• Does the security of a
framework help to make
applications more secure?

• Does building security
controls into a framework
result in “shifting-left” the
security of the
application?

What is there in the framework for security?

• Frameworks provide functionality, easiness of prototyping and
development, performance…
Hm,… security, anyone?

• Following the “shift-left” paradigm in software security, we should not only
identify and fix vulnerabilities earlier in the software development lifecycle,
but also prevent them earlier.

Development Testing Staging Production

Cost and time to find and identify problems

Shift application security left

© 2021 Synopsys, Inc. 8

A vulnerability may be mitigated at the following levels in
relation to the framework:

• L0 - No mitigation in place. Baseline – no protection
• L1 - Custom function. A sanitization routine written by

developers
• L2 - An external library that provides a sanitization

function
• L3 - A framework plugin. A third-party code used by

developers which tightly integrates with the framework
• L4 - Built-in mitigation control implemented in the

framework as a function or feature

Levels of Vulnerability Mitigation
proposed by John Steven

Developer code

Framework

3rd party library

function sanitize() {}

plugin

L1

L2

L3

L4

L5

© 2021 Synopsys, Inc. 9

• L1 - Custom function: developer
implementation

• L2 - An external library:
ESAPI (The OWASP Enterprise Security API) -
a security control library
https://github.com/ESAPI/esapi-java-legacy

• L3 - A framework plugin:
the csurf plugin for Express
https://www.npmjs.com/package/csurf

• L4 - Built-in mitigation control:
Spring Security
https://spring.io/projects/spring-security

Mitigation Examples

!"#$%&'# $'() *(+), -
(+).)+%*-
/0$$+))12'#%('31033'415(&6&#/7 /89:
/0$$+))12'#%('31033'41;+<=+()/7 /5(&6&#:>?1@+A"+)%+=1B&%C:>

2'#%+#%1DEF+:>0$$+F%9
G,
(+%"(# (+)>
G

https://xkcd.com/221/

https://github.com/ESAPI/esapi-java-legacy
https://www.npmjs.com/package/csurf
https://spring.io/projects/spring-security

© 2021 Synopsys, Inc. 10

Hypothesis

The closer the mitigation is located to the framework
itself, the fewer vulnerabilities the code will have.

FrameworkDeveloper code

© 2021 Synopsys, Inc. 11

Client-side JavaScript frameworks and XSS

Case Study 1

© 2021 Synopsys, Inc. 12

• Use case: the application needs to display user input that contains HTML markup

• Application Selection Criteria:
• Application type: blog or CMS

• Full-stack JavaScript applications
• Template engines: Jade/Pug, EJS, AngularJS

Total of 170 projects:
• 65 Jade/Pug
• 54 EJS
• 51 AngularJS

Data Selection for XSS Study (2016)

© 2021 Synopsys, Inc. 13

Jade/Pug
Extended pug-lexer

and pug-parser

EJS
Extended EJS core

project, custom analyzer

AngularJS
ESLint with a custom rule

Download project
info and template files

from GitHub

Run parser and analyzer
for each template engine

Perform manual review Perform statistical
analysis of the results

Analysis Pipeline

© 2021 Synopsys, Inc. 14

Mitigation Levels:
L1 - Custom function
L2 - An external library
L3 - A framework plugin
L4 - Built-in mitigation control

Template
engine

Number of
projects

Number of
vulnerabilities

Number of
vulnerable
projects

% of
vulnerable
projects

Mitigation
level

Jade/Pug 65 72 25 38% L1 or L2
EJS 54 96 23 43% L1 or L2
AngularJS 51 12 6 12% L4

Percentage of applications vulnerable to XSS

Hypothesis proved (for XSS): the closer the mitigation
is located to the framework itself, the fewer vulnerabilities
the code will have

Case Study 1: Results

© 2021 Synopsys, Inc. 16

Server-side JavaScript frameworks and CSRF

Case Study 3

© 2021 Synopsys, Inc. 17

CSRF - “an attack that forces an end user to execute unwanted actions on a web
application in which they're currently authenticated” (OWASP)

Protection methods:
• Server-Side:

– CSRF tokens
§ In POST parameters
§ Double-submit cookie

– Two-factor authentication

• Not using session cookies:
– JWT
– Using web socket session

• Client-side:
• Same-site cookies
• White-listing

expected origins
• Allowed referrer

lists

https://linuxsecurityblog.com/2016/02/11/defending-against-csrf-attacks/

Case Study 2: CSRF

© 2021 Synopsys, Inc. 18

Use case: authenticated users call sensitive functionality that change the server state

Application Selection Criteria:
• Application type:

– Blog
– CMS
– E-commerce
– REST API

• JavaScript server-side applications
• Frameworks: Express, Koa, Hapi, Sails, Meteor*

Selection goal:

• 100 applications per framework

• Selected total 364 applications

Data Selection for CSRF Study (2018)

Framework Blog CMS E-commerce REST API Total Mitigation
Level

Express 29 35 45 0 109 L3

Koa 68 26 6 0 100 L3

Hapi 26 3 9 10 48 L3

Sails 72 20 15 0 107 L4

© 2021 Synopsys, Inc. 19

A CSRF attack depends on a session being maintained in a cookie. If there is no cookie, the attack is not
possible.

Meteor:
• Meteor uses custom Distributed Data Protocol (DDP) for client-server

communication
• DDP runs on WebSockets instead of HTTP
• A session is maintained via a long-lived WebSocket connection
• A third party cannot send a forged request over an established

WebSocket connection

JSON Web Token (JWT):
• Developed as access tokens, but used as session tokens
• Not stored in cookies, but transmitted in HTTP headers, which are not added to cross-origin requests by the

browser
• Have other limitations, but do protect from CSRF

Special Case: Meteor and JWT

© 2021 Synopsys, Inc. 20

A vulnerability may be mitigated at the following levels in
relation to the framework:

• L0 - No mitigation in place. Baseline – no protection
• L1 - Custom function. A sanitization routine written by

developers
• L2 - An external library that provides a sanitization

function
• L3 - A framework plugin. A third-party code used by

developers which tightly integrates with the framework
• L4 - Built-in mitigation control implemented in the

framework as a function or feature
• L5 – Architecture level mitigation control. A framework

is designed in a way that makes the attack impossible

Levels of Vulnerability Mitigation
proposed by John Steven

Developer code

Framework

3rd party library

function sanitize() {}

plugin

L1

L2

L3

L4

Framework design/platformL5

© 2021 Synopsys, Inc. 21

CSRF plugins:
csurf, csrf, alt-XSRF,
koa-csrf, crumb, lusca

Sails configuration

JWT plugins

Download project
from GitHub

Run ESLint with
custom rules

Perform manual review Perform statistical
analysis of the results

Analysis Pipeline

© 2021 Synopsys, Inc. 22

Framework Number of
projects

CSRF
protection

JWT Total
protected

% of
protected
projects

Mitigation
level

Express 109 6 9 15 14% L3

Koa 100 6 14 19* 19% L3

Hapi 48 0 17 17 35% L3

Sails 107 7 8 15 14% L4

Mitigation Levels:
L1 - Custom function
L2 - An external library
L3 - A framework plugin
L4 - Built-in mitigation control

Percentage of applications protected from CSRF

Case Study 2: Results

For CSRF, the hypothesis is not proved. There is no correlation
between the level of CSRF mitigation and the presence of the
CSRF of vulnerability in the application, except for L5.

© 2021 Synopsys, Inc. 23

• Compare the percentage of protected projects by mitigation level/framework:

Why?
• L4 protection in Angular is enabled by default
• L4 protection in Sails is disabled by default
Ø Secure defaults are as important as the implementation levels of security

controls

Comparing XSS and CSRF Results

© 2021 Synopsys, Inc. 24

Electron and desktop application vulnerabilities

Case Study 3

© 2021 Synopsys, Inc. 25Synopsys Confidential InformationSynopsys Confidential Information

Study of Electron Applications
• Selected 141 open source applications from Github, based

on Awesome Electron
https://github.com/sindresorhus/awesome-electron

– Markdown editors

– Messenger apps

– Database clients

– Password generators

– Music players
• Ran Electronegativity and manually analyzed results

https://github.com/doyensec/electronegativity
• Identified top 8 most common vulnerability categories

out of 17 total categories

https://github.com/sindresorhus/awesome-electron
https://github.com/doyensec/electronegativity

© 2021 Synopsys, Inc. 26Synopsys Confidential InformationSynopsys Confidential Information

Electron Applications Study Results
• 141 open source applications
• 1680 total defects found automatically
• 464 findings were best practices, not leading directly to vulnerabilities > discarded
• 1216 potential vulnerabilities left

– 218 true positives

– 998 false positives
• Average defect density 0.11%
• Maximum defect density 2.66%
• Limitations of Electronegativity:

– AST based analysis only. No dataflow, not sources or sinks. Leads to a lot of FPs and some FNs

– No constant propagation (if a value is set to a variable, no defect will be discovered)

const { BrowserWindow } = require('electron')
let sandbox1 = true;
let win = new BrowserWindow({

webPreferences: {
nodeIntegration: false,

sandbox: sandbox1
}

})
win.loadURL(url)

FP defect reported, because the value of sandobx1
is unknown

© 2021 Synopsys, Inc. 27Synopsys Confidential InformationSynopsys Confidential Information

Most Common Vulnerability Types
Vulnerability Type Occurrence

OPEN_EXTERNAL_JS_CHECK 49

AUXCLICK_JS_CHECK 31

SANDBOX_JS_CHECK 27

NODE_INTEGRATION_JS_CHECK 15

LIMIT_NAVIGATION_JS_CHECK 15

DANGEROUS_FUNCTIONS_JS_CHECK 15

CONTEXT_ISOLATION_JS_CHECK 13

PRELOAD_JS_CHECK 12

Can some of them be mitigated
by changing the Electron framework?

The closer the mitigation is located to
the framework itself, the fewer
vulnerabilities the code will have.

© 2021 Synopsys, Inc. 28

• nodeIntegration
– Renderer process has access to Node.js APIs by default (e.g. require(), fs module, etc.)
– Need to limit Node.js APIs from the content loaded externally
– In v. 5.0.0 the nodeIntegration setting was changed to “false” by default

• sandbox
– By default Chromium sandbox is disabled to allow Renderer code to access Node.js API, native Electron

API, third-party modules
– Additional protection if nodeIntegration is circumvented
– Disabled by default

• contextIsolation
– Allows to isolate JavaScript execution context between the main process and the renderer process
– Attack: override built-in JavaScript methods through prototype pollution and then toggle the method call
– In v. 5.0.0 proposed to enable it by default, but was implemented in v. 12.0.0

Built-in Security Controls in Electron

© 2021 Synopsys, Inc. 29Synopsys Confidential InformationSynopsys Confidential Information

Most Common Vulnerability Types and Mitigations

Vulnerability Type Occurrence Mitigation Level Description

OPEN_EXTERNAL_JS_CHECK 49 4 Additional API

AUXCLICK_JS_CHECK 31 4 Secure default

SANDBOX_JS_CHECK 27 4 Secure default

NODE_INTEGRATION_JS_CHECK 15 4 Secure default*

LIMIT_NAVIGATION_JS_CHECK 15 4 Policy control

DANGEROUS_FUNCTIONS_JS_CHECK 15 No, 1 or 0 No suggestion

CONTEXT_ISOLATION_JS_CHECK 13 4 Secure default*

PRELOAD_JS_CHECK 12 No, 1 or 0 No suggestion

© 2021 Synopsys, Inc. 30Synopsys Confidential InformationSynopsys Confidential Information

What should a developer do?
• It takes a long time to fix the framework – not an option
• Provide useful tools to developers early in the life cycle

• We created a VisualStudio Code plugin Electrolint
– Scans the code with Electronegativity
– Highlights the vulnerable source code in the IDE
– Provides contextual mitigation for the top 8 common vulnerabilities and more

Check it out: https://github.com/ksdmitrieva/electrolint
Use and contribute!

https://github.com/ksdmitrieva/electrolint

© 2021 Synopsys, Inc. 31Synopsys Confidential InformationSynopsys Confidential Information

Thank you!

Ksenia Peguero
ksenia@synopsys.com
Twitter: @KseniaDmitrieva

https://github.com/ksdmitrieva/electrolint

https://github.com/ksdmitrieva/electrolint

